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 Summary 
 The Silvermint platform needs a language for writing smart contracts. Other platforms have 
 suffered attacks involving the loss of hundreds of millions of dollars worth of tokens due to bugs 
 in contracts. To help avoid this, we want to give programmers the ability to formally verify their 
 code. On the other hand, we also want to avoid having to develop an entire ecosystem — 
 compiler, libraries, editors, debuggers, package management, etc. — around a new language. 
 There is the practical fact that the  top 40 languages  ,  with the exception of Prolog at #20 and 
 Haskell at #38, are eager, imperative programming languages. We need interactions with smart 
 contracts not to interfere with the Casanova consensus algorithm that's at the heart of 
 Silvermint's performance. And finally, we want programmers to be able to use Symmetry to write 
 both the on-chain contracts and the off-chain servers that interact with them using the same 
 language. 

 We decided to use an existing mature imperative programming language and then add features 
 to it to support formal verification. We chose  Go  ,  a relatively simple, memory safe, strictly-typed 
 language in the C family. With the exception of unsafe operations, our language, Symmetry, is a 
 strict superset of Go, so nearly every Go program is a Symmetry program.  Because we are 
 developing in Go, once Symmetry is mature enough we will also start using the extensions to 
 formally verify our own code, not just smart contracts written by users. 

 To formally verify programs, we are using Microsoft's  Z3  tool, a satisfiability modulo theories 
 (SMT) solver. Z3 is the power behind the  Dafny  and  ZetZ  languages, formally verifiable 
 languages from which we're borrowing many features. 

http://web.archive.org/web/20220610172351/https://www.tiobe.com/tiobe-index/
https://go.dev/
https://github.com/Z3Prover/z3
https://github.com/dafny-lang/dafny
https://github.com/zetzit/zz


 We also introduce "layer" keywords that allow programmers to restrict portions of their code to 
 interesting subsets of the language that are easier to verify. For example, one layer keyword 
 restricts Go to a side-effect-free subset of the language; code defined in that language cannot 
 cause side effects except through the objects it receives as parameters. 

 To run contracts in parallel, Silvermint contracts use the  communicating event loop model 
 familiar to all web developers. When a contract processes a message, it begins a transaction; 
 only after the message processing is complete and the new state has been committed are the 
 outgoing messages put in other contracts' message queues. Some contracts need to 
 communicate with other contracts within a single transaction, like a flash loan for a collateral 
 swap. These contracts can enter into a "distributed transaction" that can roll back the effects 
 across multiple contracts over multiple blocks if an error occurs. 

 Finally, Symmetry is an  object-capability-secure  (ocaps)  language. Functional programming 
 languages allow programmers to reason about side effects by banning them entirely. Ocaps 
 languages, on the other hand, permit side effects, but in a principled way: code can only cause 
 side effects by invoking methods on objects within their lexical scope. Unsafe operations (e.g. 
 from the unsafe package or the reflect package) are forbidden. 

 Algebraic Data Types 
 One feature of most functional programming languages that we missed in Go was algebraic 
 data types. Symmetry introduces a new keyword sym_  sum  .  The following code 

 sym_sum Tree[X any] { 
 type Node struct { 

 Data X 
 Left Tree[X] 
 Right Tree[X] 

 } 
 type Leaf struct {} 

 } 

 transpiles to something like 

 type Tree[X any] interface { 
 is628940432577(X) 

 } 

 type Node[X any] struct { 
 Data  X 
 Left  Tree[X] 
 Right Tree[X] 

 } 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://en.wikipedia.org/wiki/Object-capability_model


 func (Node[X]) is628940432577(_ X) {} 

 type Leaf[X any] struct{} 

 func (Leaf[X]) is628940432577(_ X) {} 

 A  sum  denotes an interface with a private, randomly-named  method implemented by the 
 contained structs. Since it's private and unpredictable, no other structs can implement it, even if 
 they're declared in the same file.  This implies that the set of structs that do implement it is 
 known at compile time. When doing  switch t := tree.(type)  { … }  , the type checker 
 will emit an error if all cases aren't handled. 

 ADTs will also come with built-in  transform  and  reduce  methods. These are often called  map 
 and  fold  , respectively, in other languages.  We couldn't  use "map" because it's already a 
 keyword in Go, so we chose to use the C++ terminology. 

 Advanced type system and Z3 
 Z3  is a Satisfiability Modulo Theories (SMT) solver  from Microsoft. Many languages use Z3 for 
 proving properties of code. We'll have some combination of Dafny and ZetZ features for formal 
 verification, including preconditions, postconditions, inline assertions, and proof obligations in 
 interfaces. 

 Go 1.18 introduced generics based on the  Hindley–Milner  type system  . These are "intrinsic" or 
 "Church" types. We can use Z3 assertions to augment the type system with "extrinsic" or 
 "Curry" types  1  .  For example, the Document Object  Model used in all web browsers includes the 
 addEventListener  API, which takes a string as its  first parameter and an event handler 
 function as its second.  The kind of events sent to the handler depends on the string. Given a 
 similar interface in Symmetry, a Z3 assertion would prevent  addEventListener  from being 
 called with mismatched parameters. This is an instance of a sigma type, a kind of dependent 
 type. 

 To get the full strength of Z3, we'll essentially need to write a compiler from Go into Z3.  This will 
 be a long process, so we'll be providing incremental improvements to coverage of the language 
 as we release new versions. 

 1  For a comparison of intrinsic and extrinsic types,  see, e.g.  Functors are Type Refinement 
 Systems  . 

https://github.com/Z3Prover/z3
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://noamz.org/papers/funts.pdf
http://noamz.org/papers/funts.pdf


 Determinism and on-chain execution 
 Symmetry is intended to run on the blockchain, where many different computers have to agree 
 on the computation. We have three options regarding nondeterminism on the blockchain: 

 1.  implement our own deterministic scheduler 
 2.  record message arrival order for all messages so that the other validators can check that 

 such a message is allowed to be delivered and deliver them in that order 
 3.  remove channels from the language on chain 

 Option 1 means there is only one order in which otherwise parallel processes could run. Option 
 2 allows more freedom for the execution order, but requires sending traces as part of the 
 information in the block, which bloats blocks and slows down the network. Option 3 is vastly 
 simpler to implement, but means not all Go programs are Symmetry programs. We will probably 
 start with option 3 and then change to 1 later. 

 Go does not specify the order in which iteration over a map should occur. Symmetry's ADTs will 
 have  transform  and  reduce  methods that are implemented  in the Core layer and require 
 Core functions as parameters. Symmetry will also provide similar purely functional 
 implementations for slices and maps.  On slices, the function provided to the  reduce  method 
 must be associative; on maps, it must also be commutative. These constraints mean the result 
 is independent of the iteration order. 

 When using the  for-range  construction, however, executing  on the blockchain requires that 
 we either choose an order or verify that the order given is one that could actually occur.  Rather 
 than make the programmer think about all possible orders and the implications, we will choose a 
 deterministic order for maps.  One might think that keys could be sorted, but not all key types 
 support sorting. Insertion order is a reasonable alternative that works independent of the key 
 type. 

 Layers 
 Symmetry uses "layers" to restrict language features for security purposes. The principal layers 
 are a side-effect-free layer, a single-threaded layer, and the full language, which includes all of 
 Go as a subset. 

 Purely functional languages like Haskell allow programmers to write stateful code by using a 
 monad  . Dually, we can enforce side-effect-free code  in an imperative language by using a 
 comonad  . Symmetry provides three comonads that enforce  the language constraints on the 
 lower three layers. 

 If we take option 1 for nondeterminism,  stateful  and  full  below are distinct; if option 3, they're 
 the same. With option 3, objects within a contract could invoke methods of other objects in the 

https://en.wikipedia.org/wiki/Monad_(functional_programming)#State_monads
https://arxiv.org/abs/1907.07283


 same contract either synchronously or asynchronously, but not in parallel (except as noted 
 below for transform/reduce or side-effect-free code like core). 

 ●  core  : no mutation, only for-range loops + ADTs + proof  types in interfaces. Turing 
 complete.  Note that core is not purely functional.  Given a typical getter/setter pair for a 
 value, the getter would be in core and the setter in stateful. Because the getter could 
 return different values at different times, it does not behave exactly like a pure function 
 even though it cannot cause side effects 

 ●  stateful  : core + rest of single-threaded Go + parallel  transform/reduce on code that's 
 provably commutative & associative 

 ●  full  : stateful + channels + goroutines (for blockchain,  we would need deterministic 
 threading) 

 We have also defined these other sublanguages, but it's not clear yet where or how they'd be 
 used: 

 ●  data  : pure data, "GOON" Go Object Notation, with strings,  bigints (as syntax, may not fit 
 in int when parsed), floats (may lose info when parsed, e.g. numbers bigger than 1e+404 
 may parse as infinite), structs, arrays, maps, nil. 

 ●  expression  : pure data + field lookup + array indexing  + arithmetic operators. 
 ●  functional  : core with the added restriction that functions  may not close over variables 

 that are also closed over by stateful or full functions 

 Symmetries 
 All comments with the exception of "distributed transactional" apply to the layer on that line and 
 those above it. 

 data  no computation 

 expressions  can be evaluated in linear time if fixed 
 numeric (int, float) sizes are used, polynomial 
 if bignums are used 

 functional  pure functional 

 core  no side effects 

 stateful  single threaded except for parallelization in 
 transform/reduce with functions proven 
 commutative, associative 

 full  locally transactional; deterministic on chain if 



 we choose option 1, replicable if 2 

 Auditors 
 The type checker checks each layer with a predicate on an (AST, symbol table) pair called an 
 "auditor".  Quoting from  Yee and Miller  : 

 We can get other kinds of constraints when the auditor does inspect the code. 
 Here are some examples of interesting semantic properties: 

 ●  confined  : the object does not overtly transmit outward  any information or 
 authority it receives in messages (it can only transmit information or authority with 
 which it was endowed upon creation) 

 ●  deterministic  : the object cannot obtain any information  or authority 
 except through messages sent directly to it (that is, a log of the received 
 messages is sufficient to replay its entire behaviour) 

 ●  functional  : every method on the object has no side  effects and produces 
 an immutable result depending solely on its arguments 

 ●  frozen  : the object does not ever mutate any local  bindings (or in other 
 words, it is indistinguishable from a duplicate that contains copies of the bindings 
 for the free variables accessed by the object's methods) 

 ●  deep frozen  : the object cannot ever cause the mutation  of anything 

 ●  open source  : the object provides access to all of  its source code through 
 a standard interface 

 ●  open state  : the object provides access to all of its  internal state through a 
 standard interface 

 ●  transparent  : the object is both  open source  and  open  state 

 ●  pass-by-copy  : the object is safe to transmit to another  party by sending a 
 copy of the object's source code and state 

 Although determining that a program will  actually  behave in a particular way is 
 undecidable in general, for all but the last of these properties we can define a 
 straightforward check that admits a reasonable subset of the space of acceptable 
 programs in practice. 

http://www.erights.org/elang/kernel/auditors/index.html


 We intend to allow users to define their own auditors and layers. 

 Contracts 
 A contract is an object server. Messages to the server contain a reference to an object in the 
 server's memory, a method name, a list of arguments, and a location to send the result of the 
 invocation. Usually, the server runs the method code synchronously, providing promises for the 
 result of invocations of methods on objects in other contracts. If the code completes 
 successfully, the messages get added to the other contracts' message queues. 

 Unless proven otherwise, the order in which messages get delivered to a contract matters. 
 Therefore, the Silvermint network decides on an order for the messages. Each message sent to 
 a contract must specify an epoch. Validators keep track of the current epoch of each contract, 
 and increment it whenever they see a message to that contract. This means that the number of 
 validators is an upper bound on the total number of messages that can contend for access to a 
 contract during any given epoch. 

 Usually the network will sort the messages in an epoch by hash, and deliver them one by one. 
 However, some contracts may prefer to order them by some other criterion; for example, an 
 order book would want to sort bids and asks by price. Each contract decides how it wants to 
 receive messages. 

 When messages depend on each other, we will deliver them in  E-Order  , the closest we can get 
 to causal order using only cryptography. 

 Certain applications, like flash loans for collateral swap, require multiple contracts to interact 
 within a single transaction. There are  existing protocols  for supporting distributed transactions, 
 but we haven't yet pinned down how Symmetry will provide this ability. We may add special 
 syntax or we may provide a library. 

 Conclusion 
 The Symmetry design provides a formally verifiable, ocaps-secure, eager, imperative, mature 
 programming language with an opt-in side-effect-free sublanguage. It also encompasses all of 
 existing Go, which provides a rich ecosystem for developers. We anticipate that these features 
 will make Symmetry an attractive choice for new blockchain programmers as well as for 
 systems engineers concerned about the reliability of their code. 

http://erights.org/talks/thesis/markm-thesis.pdf#chapter.19
https://www.cs.uic.edu/~ajayk/Checkpointing.pdf

