
 Symmetry language extensions for Go
 Michael Stay (stay@pyrofex.net)

Jun 10, 2022

 Summary

 Algebraic Data Types

 Advanced type system and Z3

 Determinism and on-chain execution

 Layers
 Symmetries
 Auditors

 Contracts

 Conclusion

 Summary
 The Silvermint platform needs a language for writing smart contracts. Other platforms have
 suffered attacks involving the loss of hundreds of millions of dollars worth of tokens due to bugs
 in contracts. To help avoid this, we want to give programmers the ability to formally verify their
 code. On the other hand, we also want to avoid having to develop an entire ecosystem —
 compiler, libraries, editors, debuggers, package management, etc. — around a new language.
 There is the practical fact that the top 40 languages , with the exception of Prolog at #20 and
 Haskell at #38, are eager, imperative programming languages. We need interactions with smart
 contracts not to interfere with the Casanova consensus algorithm that's at the heart of
 Silvermint's performance. And finally, we want programmers to be able to use Symmetry to write
 both the on-chain contracts and the off-chain servers that interact with them using the same
 language.

 We decided to use an existing mature imperative programming language and then add features
 to it to support formal verification. We chose Go , a relatively simple, memory safe, strictly-typed
 language in the C family. With the exception of unsafe operations, our language, Symmetry, is a
 strict superset of Go, so nearly every Go program is a Symmetry program. Because we are
 developing in Go, once Symmetry is mature enough we will also start using the extensions to
 formally verify our own code, not just smart contracts written by users.

 To formally verify programs, we are using Microsoft's Z3 tool, a satisfiability modulo theories
 (SMT) solver. Z3 is the power behind the Dafny and ZetZ languages, formally verifiable
 languages from which we're borrowing many features.

http://web.archive.org/web/20220610172351/https://www.tiobe.com/tiobe-index/
https://go.dev/
https://github.com/Z3Prover/z3
https://github.com/dafny-lang/dafny
https://github.com/zetzit/zz

 We also introduce "layer" keywords that allow programmers to restrict portions of their code to
 interesting subsets of the language that are easier to verify. For example, one layer keyword
 restricts Go to a side-effect-free subset of the language; code defined in that language cannot
 cause side effects except through the objects it receives as parameters.

 To run contracts in parallel, Silvermint contracts use the communicating event loop model
 familiar to all web developers. When a contract processes a message, it begins a transaction;
 only after the message processing is complete and the new state has been committed are the
 outgoing messages put in other contracts' message queues. Some contracts need to
 communicate with other contracts within a single transaction, like a flash loan for a collateral
 swap. These contracts can enter into a "distributed transaction" that can roll back the effects
 across multiple contracts over multiple blocks if an error occurs.

 Finally, Symmetry is an object-capability-secure (ocaps) language. Functional programming
 languages allow programmers to reason about side effects by banning them entirely. Ocaps
 languages, on the other hand, permit side effects, but in a principled way: code can only cause
 side effects by invoking methods on objects within their lexical scope. Unsafe operations (e.g.
 from the unsafe package or the reflect package) are forbidden.

 Algebraic Data Types
 One feature of most functional programming languages that we missed in Go was algebraic
 data types. Symmetry introduces a new keyword sym_ sum . The following code

 sym_sum Tree[X any] {
 type Node struct {

 Data X
 Left Tree[X]
 Right Tree[X]

 }
 type Leaf struct {}

 }

 transpiles to something like

 type Tree[X any] interface {
 is628940432577(X)

 }

 type Node[X any] struct {
 Data X
 Left Tree[X]
 Right Tree[X]

 }

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://en.wikipedia.org/wiki/Object-capability_model

 func (Node[X]) is628940432577(_ X) {}

 type Leaf[X any] struct{}

 func (Leaf[X]) is628940432577(_ X) {}

 A sum denotes an interface with a private, randomly-named method implemented by the
 contained structs. Since it's private and unpredictable, no other structs can implement it, even if
 they're declared in the same file. This implies that the set of structs that do implement it is
 known at compile time. When doing switch t := tree.(type) { … } , the type checker
 will emit an error if all cases aren't handled.

 ADTs will also come with built-in transform and reduce methods. These are often called map
 and fold , respectively, in other languages. We couldn't use "map" because it's already a
 keyword in Go, so we chose to use the C++ terminology.

 Advanced type system and Z3
 Z3 is a Satisfiability Modulo Theories (SMT) solver from Microsoft. Many languages use Z3 for
 proving properties of code. We'll have some combination of Dafny and ZetZ features for formal
 verification, including preconditions, postconditions, inline assertions, and proof obligations in
 interfaces.

 Go 1.18 introduced generics based on the Hindley–Milner type system . These are "intrinsic" or
 "Church" types. We can use Z3 assertions to augment the type system with "extrinsic" or
 "Curry" types 1 . For example, the Document Object Model used in all web browsers includes the
 addEventListener API, which takes a string as its first parameter and an event handler
 function as its second. The kind of events sent to the handler depends on the string. Given a
 similar interface in Symmetry, a Z3 assertion would prevent addEventListener from being
 called with mismatched parameters. This is an instance of a sigma type, a kind of dependent
 type.

 To get the full strength of Z3, we'll essentially need to write a compiler from Go into Z3. This will
 be a long process, so we'll be providing incremental improvements to coverage of the language
 as we release new versions.

 1 For a comparison of intrinsic and extrinsic types, see, e.g. Functors are Type Refinement
 Systems .

https://github.com/Z3Prover/z3
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://noamz.org/papers/funts.pdf
http://noamz.org/papers/funts.pdf

 Determinism and on-chain execution
 Symmetry is intended to run on the blockchain, where many different computers have to agree
 on the computation. We have three options regarding nondeterminism on the blockchain:

 1. implement our own deterministic scheduler
 2. record message arrival order for all messages so that the other validators can check that

 such a message is allowed to be delivered and deliver them in that order
 3. remove channels from the language on chain

 Option 1 means there is only one order in which otherwise parallel processes could run. Option
 2 allows more freedom for the execution order, but requires sending traces as part of the
 information in the block, which bloats blocks and slows down the network. Option 3 is vastly
 simpler to implement, but means not all Go programs are Symmetry programs. We will probably
 start with option 3 and then change to 1 later.

 Go does not specify the order in which iteration over a map should occur. Symmetry's ADTs will
 have transform and reduce methods that are implemented in the Core layer and require
 Core functions as parameters. Symmetry will also provide similar purely functional
 implementations for slices and maps. On slices, the function provided to the reduce method
 must be associative; on maps, it must also be commutative. These constraints mean the result
 is independent of the iteration order.

 When using the for-range construction, however, executing on the blockchain requires that
 we either choose an order or verify that the order given is one that could actually occur. Rather
 than make the programmer think about all possible orders and the implications, we will choose a
 deterministic order for maps. One might think that keys could be sorted, but not all key types
 support sorting. Insertion order is a reasonable alternative that works independent of the key
 type.

 Layers
 Symmetry uses "layers" to restrict language features for security purposes. The principal layers
 are a side-effect-free layer, a single-threaded layer, and the full language, which includes all of
 Go as a subset.

 Purely functional languages like Haskell allow programmers to write stateful code by using a
 monad . Dually, we can enforce side-effect-free code in an imperative language by using a
 comonad . Symmetry provides three comonads that enforce the language constraints on the
 lower three layers.

 If we take option 1 for nondeterminism, stateful and full below are distinct; if option 3, they're
 the same. With option 3, objects within a contract could invoke methods of other objects in the

https://en.wikipedia.org/wiki/Monad_(functional_programming)#State_monads
https://arxiv.org/abs/1907.07283

 same contract either synchronously or asynchronously, but not in parallel (except as noted
 below for transform/reduce or side-effect-free code like core).

 ● core : no mutation, only for-range loops + ADTs + proof types in interfaces. Turing
 complete. Note that core is not purely functional. Given a typical getter/setter pair for a
 value, the getter would be in core and the setter in stateful. Because the getter could
 return different values at different times, it does not behave exactly like a pure function
 even though it cannot cause side effects

 ● stateful : core + rest of single-threaded Go + parallel transform/reduce on code that's
 provably commutative & associative

 ● full : stateful + channels + goroutines (for blockchain, we would need deterministic
 threading)

 We have also defined these other sublanguages, but it's not clear yet where or how they'd be
 used:

 ● data : pure data, "GOON" Go Object Notation, with strings, bigints (as syntax, may not fit
 in int when parsed), floats (may lose info when parsed, e.g. numbers bigger than 1e+404
 may parse as infinite), structs, arrays, maps, nil.

 ● expression : pure data + field lookup + array indexing + arithmetic operators.
 ● functional : core with the added restriction that functions may not close over variables

 that are also closed over by stateful or full functions

 Symmetries
 All comments with the exception of "distributed transactional" apply to the layer on that line and
 those above it.

 data no computation

 expressions can be evaluated in linear time if fixed
 numeric (int, float) sizes are used, polynomial
 if bignums are used

 functional pure functional

 core no side effects

 stateful single threaded except for parallelization in
 transform/reduce with functions proven
 commutative, associative

 full locally transactional; deterministic on chain if

 we choose option 1, replicable if 2

 Auditors
 The type checker checks each layer with a predicate on an (AST, symbol table) pair called an
 "auditor". Quoting from Yee and Miller :

 We can get other kinds of constraints when the auditor does inspect the code.
 Here are some examples of interesting semantic properties:

 ● confined : the object does not overtly transmit outward any information or
 authority it receives in messages (it can only transmit information or authority with
 which it was endowed upon creation)

 ● deterministic : the object cannot obtain any information or authority
 except through messages sent directly to it (that is, a log of the received
 messages is sufficient to replay its entire behaviour)

 ● functional : every method on the object has no side effects and produces
 an immutable result depending solely on its arguments

 ● frozen : the object does not ever mutate any local bindings (or in other
 words, it is indistinguishable from a duplicate that contains copies of the bindings
 for the free variables accessed by the object's methods)

 ● deep frozen : the object cannot ever cause the mutation of anything

 ● open source : the object provides access to all of its source code through
 a standard interface

 ● open state : the object provides access to all of its internal state through a
 standard interface

 ● transparent : the object is both open source and open state

 ● pass-by-copy : the object is safe to transmit to another party by sending a
 copy of the object's source code and state

 Although determining that a program will actually behave in a particular way is
 undecidable in general, for all but the last of these properties we can define a
 straightforward check that admits a reasonable subset of the space of acceptable
 programs in practice.

http://www.erights.org/elang/kernel/auditors/index.html

 We intend to allow users to define their own auditors and layers.

 Contracts
 A contract is an object server. Messages to the server contain a reference to an object in the
 server's memory, a method name, a list of arguments, and a location to send the result of the
 invocation. Usually, the server runs the method code synchronously, providing promises for the
 result of invocations of methods on objects in other contracts. If the code completes
 successfully, the messages get added to the other contracts' message queues.

 Unless proven otherwise, the order in which messages get delivered to a contract matters.
 Therefore, the Silvermint network decides on an order for the messages. Each message sent to
 a contract must specify an epoch. Validators keep track of the current epoch of each contract,
 and increment it whenever they see a message to that contract. This means that the number of
 validators is an upper bound on the total number of messages that can contend for access to a
 contract during any given epoch.

 Usually the network will sort the messages in an epoch by hash, and deliver them one by one.
 However, some contracts may prefer to order them by some other criterion; for example, an
 order book would want to sort bids and asks by price. Each contract decides how it wants to
 receive messages.

 When messages depend on each other, we will deliver them in E-Order , the closest we can get
 to causal order using only cryptography.

 Certain applications, like flash loans for collateral swap, require multiple contracts to interact
 within a single transaction. There are existing protocols for supporting distributed transactions,
 but we haven't yet pinned down how Symmetry will provide this ability. We may add special
 syntax or we may provide a library.

 Conclusion
 The Symmetry design provides a formally verifiable, ocaps-secure, eager, imperative, mature
 programming language with an opt-in side-effect-free sublanguage. It also encompasses all of
 existing Go, which provides a rich ecosystem for developers. We anticipate that these features
 will make Symmetry an attractive choice for new blockchain programmers as well as for
 systems engineers concerned about the reliability of their code.

http://erights.org/talks/thesis/markm-thesis.pdf#chapter.19
https://www.cs.uic.edu/~ajayk/Checkpointing.pdf

